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Abstract—Retinopathy of prematurity (ROP) is a retinal 
disease which frequently occurs in premature babies with 
low birth weight and is considered as one of the major 
preventable causes of childhood blindness. Although 
automatic and semi-automatic diagnoses of ROP based on 
fundus image have been researched, most of the previous 
studies focused on plus disease detection and ROP 
screening. There are few studies focusing on ROP staging, 
which is important for the severity evaluation of the disease. 
To be consistent with clinical 5-level ROP staging, a novel 
and effective deep neural network based 5-level ROP 
staging network is proposed, which consists of multi-
stream based parallel feature extractor, concatenation 
based deep feature fuser and clinical practice based ordinal 
classifier. First, the three-stream parallel framework 
including ResNet18, DenseNet121 and EfficientNetB2 is 
proposed as the feature extractor, which can extract rich 
and diverse high-level features. Second, the features from 
three streams are deeply fused by concatenation and 
convolution to generate a more effective and 
comprehensive feature. Finally, in the classification stage, 
an ordinal classification strategy is adopted, which can 
effectively improve the ROP staging performance. The 
proposed ROP staging network was evaluated with per-
image and per-examination strategies. For per-image ROP 
staging, the proposed method was evaluated on 635 retinal 
fundus images from 196 examinations, including 303 
Normal, 26 Stage 1, 127 Stage 2, 106 Stage 3, 61 Stage 4 and 
12 Stage 5, which achieves 0.9055 for weighted recall, 
0.9092 for weighted precision, 0.9043 for weighted F1 score, 
0.9827 for accuracy with 1 (ACC1) and 0.9786 for Kappa, 
respectively. While for per-examination ROP staging, 1173 
examinations with a 4-fold cross validation strategy were 
used to evaluate the effectiveness of the proposed method, 
which prove the validity and advantage of the proposed 
method.   

 
Index Terms—Retinopathy of Prematurity, Feature 

Fusion, Ordinal Classification, Automatic Staging, Fundus 
Images. 
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I. INTRODUCTION 

ETINOPATHY of prematurity (ROP) is caused by the 

abnormal development and proliferation of immature 

retinal vessels, which is a blinding eye disease accounting for 

about 19% of the causes of blindness in children worldwide and 

is often seen in premature infants with low gestational weeks 

( less than 32 weeks) and low birth weight (less than 1500g) [1-

3]. According to 47 studies from 27 low- and middle-income 

countries, about half of low birth weight (LBW) infants are 

preterm rather than one-third of the pre-1990s hypothesis [4-5]. 

In China, the incidence of ROP in LBW infants is 26.0% [6].   

With the increasing number of high-risk children in the world, 

ROP screening for high-risk children becomes particularly 

important [7]. According to the guidelines described by the 

international classification of ROP (ICROP), abnormal retinas 

of prematurity mainly includes three zones, five stages of ROP 

and a type of ancillary illness called plus disease based on the 

location, extent and severity of disease [8-10]. Five stages of 

ROP are used to characterize the severity of ROP according to 

the appearance of the retinal vessels at the avascular-vascular 

junction, which are shown in Fig. 1. A detailed description of 

the symptoms is given in Table 1. In addition, a type of ancillary 

illness called “plus” disease along with ROP is proposed, which 

can be found at any stage of ROP and is characterized by 

increased dilation and tortuosity in retinal vessels. 

Standardized screening, graded diagnosis and treatment are 

effective ways to reduce the blindness rate of ROP. ROP 

screening tools mainly include binocular indirect 

ophthalmoscope and wide-angle digital fundus photography 

system in clinic. Wide-angle digital fundus photography is 

widely used due to its simple operation and high-resolution 

image [11]. The diagnosis of ROP requires the use of a wide-

angle digital fundus imaging system with high image quality 

such as Retcam3 to examine the fundus of prematurity from 

R 
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different angles. The images are then interpreted by 

experienced ophthalmologists to determine whether the ROP 

and/or plus disease are present. 

 
Fig. 1. Examples of normal and different stages of ROP. (a) Normal. 

(b) Stage 1. (c) Stage 2. (d) Stage 3. (e) Stage 4. (f) Stage 5. 

 
In the sensitive period of ROP, ophthalmologists carry out 

the routine fundus examination, early diagnosis and early 

treatment, and the success rate can be as high as 90%, which 

can effectively reduce the blindness rate. However, there are 

many difficulties in ROP screening, especially in developing 

countries [12-13]. First, the objective factor is the lack of 

medical equipment for ROP screening. Second, due to the 

complexity of professional knowledge for ROP, few 

ophthalmologists are qualified for ROP diagnosis. Furthermore, 

due to the subjective factors, ophthalmologists may be 

inconsistent in the ROP diagnosis, especially when plus disease 

is present [14-16]. Therefore, it is very important to develop a 

fast, objective and effective automatic ROP staging method. 

To reduce the workload of ophthalmologists and improve the 

efficiency in ROP diagnosis, many computer-aided diagnosis 

systems have been proposed [17-24]. Most of the related work 

on automated or semi-automated methods for ROP diagnosis 

were focused on plus disease. For example, a system called 

“ROPTool” was proposed in [17] to assist ophthalmologists in 

diagnosing plus disease by quantitatively calculating tortuosity 

of vessels. E. Ataer-Cansizoglu et al. exploited principal 

spanning forest algorithm to develop a system named “i-ROP” 

[18], which was designed to grade plus disease into three types: 

normal, pre-plus and plus. In recent years, with the 

development of deep learnings, several studies have used 

ImageNet pre-trained DNNs for the ROP screening. For 

example, Hu et al. used Inception-V2 pre-trained on ImageNet 

combining with maximum aggregation operation to recognize 

the existence and severity of ROP from different fundus images 

in one examination [19-20]. Zhang et al. used VGG16 pre-

trained on ImageNet for automated screening of ROP [21]. Our 

previous work used deep learning network with attention 

mechanism for automatic ROP screening [22]. Lei et al. utilized 

two deep convolution networks to automatically recognize 

aggressive posterior retinopathy of prematurity (AP-ROP), 

which is a retinal pathology characterized by sever vasodilation 

and distortion of the posterior pole of retina [23]. In addition, 

Chen et al. used joint segmentation and multi-instance learning 

for automatic ROP stage analysis including normal, stage 1, 

stage 2, stage 3 and stage 4 [24], which did not include stage 5.  

However, the automatic 5-level ROP staging (stage1, stage2, 

stage3, stage4, and stage 5) has not been reported, which is 

important to the evaluation of the severity of the disease [1]. 

The main challenge of ROP staging is that the labeled fundus 

images are scarce and imbalanced, which is a common problem 

in medical image analysis, such as diabetic retinopathy 

diagnosis [25-26] and age-related macular degeneration 

analysis [27-28]. Many previous studies have demonstrated that 

feature-level fusion strategy can obtain much higher 

classification accuracy than general classification method. 

Inspired by the feature fusion for high-resolution aerial scene 

classification [29-37], the feature-level fusion strategy is 

utilized to further improve the performance in ROP staging in 

this study. In previous studies [19, 20, 21, 22,24], ROP staging 

was regarded as a standard multi-classification problem, in 

which the categories are assumed to be independent of each 

other. However, there is a strong ordinal relationship between 

categories in ROP staging, which is a gradual process from mild 

to severe. So considering that the cost of misclassification in 

clinical practice is different and inspired by [38-44], we utilize 

the ordinal classification for ROP staging, which can produce 

unequal punishment for different classification errors through 

loss function. 

To sum up, we propose a novel three-stream deep network 

with feature-level fusion and ordinal classification strategy for 

the automatic 5-level ROP staging per-image and per-

examination. The main contributions can be summarized as 

follows: 

(1) A simple and effective framework consisting of three 

different parallel feature extraction deep networks is proposed 

for 5-level ROP staging. 

(2) The concatenation method is used to fuse three high-level 

features extracted by three different parallel deep networks to 

obtain a richer and more effective feature for final staging. 

(3) The introduction of ordinal classification strategy into the 

convolution neural network improves the ROP staging 

performance. 

(4) Both per-image and per-examination strategies are 

adopted in the evaluation of the proposed ROP staging network, 

which prove the effectiveness of our method.  

The remainder of this paper is organized as follows: The 

proposed method for automatic ROP staging is introduced in 

Section II. Section III presents the experimental results in detail. 

In section IV, we conclude this paper and suggest future work. 

 

TABLE I 

SYMPTOMS OF STAGE 1 TO 5 OF ROP 

Stage Symptoms 
1 A thin demarcation line that separates avascular 

retinal anteriorly from the vascular retinal 

posteriorly. 
2 Line in stage 1 becomes wide and evolves to a 

ridge. 
3 Extraretinal fibrovascular proliferation or 

neovascularization extends from the ridge into 

the vitreous. 
4 Partial retinal detachment. 
5 Total retinal detachment. 
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Fig. 2.  Schematic diagram of our proposed ROP staging networks. (a) per-image ROP staging network. (b) per-examination ROP staging network. 

Feature extractor, feature fuser and classifier are in the red, blue and green dotted boxes respectively. Feature extractor in red dotted boxes consists 

of ResNet18, DenseNet121 and EfficientNetB2. In the diagram, ‘AAP’, ‘FC’, ‘S’, ‘L’ and ‘Max’ represent adaptive average pooling operation, fully 

connected layer, sigmoid function, loss function and max feature aggressive operator, respectively. 
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II. METHODOLOGY 

In this study, we perform ROP staging per-image and per-

examination, respectively. For the former, the input of our 

network is an annotated fundus image. For the latter, the input 

of our network is an annotated examination containing multiple 

fundus images. Our proposed three-stream framework based 

ROP staging network for per-image is shown in Fig. 2 (a), 

which consists of ResNet18 [45], DenseNet121 [46] and 

EfficientNetB2 [47] for features extraction and feature-level 

fusion strategy for automatic ROP staging. The proposed 

network for per-examination ROP staging is shown in Fig. 2 (b), 

which is based on per-image ROP staging network shown in 

Fig. 2 (a).  ResNet18 is a residual network with 18 weight layers, 

including convolution layer and full connection layer. It 

skillfully uses shortcut connection to transfer part of the original 

input feature information directly to the output feature, which 

simplifies the difficulty of feature learning, protects the 

integrity of feature information to a certain extent and solves 

the problem of model degradation in deep network [45]. 

DenseNet121 is a convolutional neural network with dense 

connections, which makes full use of shallow information, 

strengthens feature propagation, encourages feature reuse, 

reduces the number of network parameters greatly and can 

alleviate the problem of gradient disappearance [46]. 

EfficientNetB2 is an amplification network based on the 

baseline network EfficientNetB0 multiplied by constant rate. 

EfficientNetB0 was developed by leveraging a multi-objective 

neural architecture search that optimized both accuracy and 

FLOPS, whose main building block is mobile inversion 

bottleneck MBConvBlock [47]. It scales the model in the three 

dimensions including network depth, width and image 

resolution to balance the richness, fineness and information loss 

of the extracted features. Considering the order of each category 

in ROP staging, the idea of ordinal classification is adopted by 

modifying the label and the loss function of the multi-

classification in the training. In the training stage, we use the 

transfer learning to obtain prior knowledge from the ImageNet 

dataset, which can accelerate network training and optimize 

network model [48-52]. In this section, the proposed ROP 

staging network will be illustrated in detail, including the 

network architecture, the feature-level fusion strategy, the 

ordinal classification and loss functions. 

A. Three-Stream Feature Extraction Frameworks 

In many previous studies about feature fusion [29-37], two-

stream deep fusion framework was proposed, in which the two 

deep networks are the same. However, this may lead to the lack 

of diversity of the extracted features in our task. Inspired by 

[29-37], we propose a feature extractor as shown in Fig. 2, 

which contains three parallel different feature extractors 

including ResNet18, DenseNet121 and EfficientNetB2 to 

extract rich and diverse high level features expected to obtain 

richer and more effective features through the following feature 

fusion. There are two main reasons to develop such a feature 

extractor. First, different types of networks concern different 

types of features and can guarantee the diversity of the extracted 

feature, which is crucial to the classification performance. 

Second, because of the limited amount of ROP data, too 

complex models are easy to be overfitting, so these three 

relatively lightweight networks are selected for our ROP 

staging task. Theoretically，these three deep networks can be 

replaced by other ones according to the specific classification 

tasks. 

As shown in Fig. 2 (b), the input for per-examination ROP 

staging is an examination containing multiple fundus images 

(12 images per-examination are adopted in this paper), which 

requires the network to predict the ROP stage according to the 

multiple fundus images comprehensively. First, 4 three-stream 

networks are used to extract features from 12 fundus images in 

the same examination in parallel. Then, inspired by researches 

[19-20], the max feature aggregated operator is adopted to 

obtain the maximum value of the 4 features from the same 

feature extractor. 

 

B. Feature Fusion 

Many previous studies [29-37] have demonstrated that 

feature-level fusion of deep features for classification is a robust 

and effective strategy, which can combine N features extracted 

by N networks into a single feature vector that contains more 

discriminant information of the image. Previous research has 

used two common methods for feature fusion: parallel feature-

level fusion strategy and serial feature-level fusion strategy. For 

the former, the fusion strategy requires features with the same 

dimensionality, and the common fusion methods include 

addition, maximum and mean operations, which are defined in 

Eq. (1), (2) and (3). For the latter, the dimensionalities of the 

features can be arbitrary and the features are fused by 

concatenation operation, which is shown in Eq. (4). The 

dimension of the fused feature vector is the sum of N features. 

In this study, the serial feature-level fusion strategy of 

concatenation is adopted. 

𝐹𝑓𝑢𝑠𝑖𝑜𝑛 = ∑ 𝐹𝑖
𝑁
𝑖=1                    (1) 

𝐹𝑓𝑢𝑠𝑖𝑜𝑛 = max(𝐹1, 𝐹2, … , 𝐹𝑁)            (2) 

𝐹𝑓𝑢𝑠𝑖𝑜𝑛 =
1

𝑁
∑ 𝐹𝑖
𝑁
𝑖=1                  (3) 

𝐹𝑓𝑢𝑠𝑖𝑜𝑛 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐹1, 𝐹2, … , 𝐹𝑛)           (4) 

where Fi is the i-th feature, N is the number of features, Ffusion is 

the fused feature and Concat (·) denotes concatenation 

operation. 

 

TABLE II 
THE LABELS ENCODING FORMS OF STANDARD CLASSIFICATION AND ORDINAL 

CLASSIFICATION 

Attribution Category Standard 

Classification 

Ordinal 

Classification 

Normal 0 [1,0,0,0,0,0] [1,0,0,0,0,0] 

Stage 1 1 [0,1,0,0,0,0] [1,1,0,0,0,0] 

Stage 2 2 [0,0,1,0,0,0] [1,1,1,0,0,0] 

Stage 3 3 [0,0,0,1,0,0] [1,1,1,1,0,0] 

Stage 4 4 [0,0,0,0,1,0] [1,1,1,1,1,0] 

Stage 5 5 [0,0,0,0,0,1] [1,1,1,1,1,1] 
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C. Ordinal Classification 

The progression of ROP from mild to severe is a gradual 

process, whose staging characteristics are depicted in TABLE 

I. Just like the age estimation in [40] and ordinal sentiment 

analysis in [41], we consider the order of the categories in ROP  

staging and introduce ordinal classification.  
Suppose D is an ordinal classification dataset with N samples 

(xi,yi) (i=1,2,…,N), where xi is an input image and yi is its 

corresponding ordinal category. Ordinal classification is 

different from standard classification due to the order of 

categories. For a standard multi-classification problem without 

considering the order of categories, the goal is to predict the 

probability of input image xi belonging to category k (yi=k). The 

category k encoded by one-hot labels is a vector g = (0, 0, …, 

0, 1, 0, …, 0), where only gk is set to 1 and all others are 0. 

Usually, softmax function is used to produce the probability 

distribution of outputs that the input image xi belongs to each 

class. In the ordinal classification, the encoding of label is 

similar to the multi-label classification in form, but the labels 

are forced to be sorted. We list the label encoding forms of 

standard classification and ordinal classification in Table II. 

From the perspective of probability, it is to learn a mapping 

from the input image xi to the output probability vector P = {p1, 

p2, …, pk, pk+1, …, pt}, in which the target value of output nodes 

pi (i ≤ k) and pi (i >k) are 1 and 0, respectively. Thus, sigmoid 

function is usually used to produce the probability distribution 

of outputs. Although using independent sigmoid function for 

output nodes does not guarantee the monotonic relation 

(p1≥p2≥, …, ≥pk≥, …, ≥pt) [40], it is desirable for making 

predictions in our task. 

D. Loss Function 

Our proposed method is a parallel three-stream network 

consisting of three different deep networks which take the 

original fundus images as input for feature extraction and can 

obtain three different high-level features. Then, these three 

features are fused into a richer and more effective feature by 

concatenation, addition, mean or maximum operation. In 

particular, considering the order of categories and the data 

imbalance problem, the total loss function combined is defined 

as follow: 

𝐿 = α ∗ 𝐿𝑜𝑐 + ∑ 𝛾𝑖 ∗ 𝐿𝑖
3
𝑖=1                (5) 

where, 

𝐿𝑜𝑐 = −
1

𝑚
∑ ∑ 𝛽𝑘 ∗ [𝐼(𝑡𝑖 = 𝑘) log(𝑝(𝑘|𝑥𝑖)) + (1 −𝐾

𝑘=1
𝑚
𝑖=1

𝐼(𝑡𝑖 = 𝑘))log(1 − 𝑝(𝑘|𝑥𝑖))]                    (6) 

𝐿𝑖 = −
1

𝑚
∑ ∑ [𝐼(𝑡𝑖 = 𝑘) log(𝑝(𝑘|𝑥𝑖)) + (1 −𝐾

𝑘=1
𝑚
𝑖=1

𝐼(𝑡𝑖 = 𝑘)) log(1 − 𝑝(𝑘|𝑥𝑖))], 𝑖 = 1,2,3    (7) 

where, 

𝛽𝑘 =
𝑠𝑖𝑛𝑔𝑙𝑒(𝑘)

𝑡𝑜𝑡𝑎𝑙
                   (8) 

Loc is the ordinal classification loss (K categories) in 

supervised learning where its corresponding label is as those 

listed in the fourth column of Table II. Li is the standard 

classification loss (K categories) in supervised learning, in 

which its corresponding label is the form of one-hot listed in 

third column of Table II. γi (i=1,2,3) and α are four super-

parameters and are all set to 0.25 in our experiments. m is the 

number of samples in per mini-batch, ti denotes the class label 

of input image xi. I(·) is an indicator function which equals one 

if ti is equal to k (k =1, 2, …,K). βk is the balance coefficient of 

class k in training process, single(k) and 𝑡𝑜𝑡𝑎𝑙 are the numbers 

of class k and total number of training images. 

III. EXPERIMENTS AND RESULTS 

In this section, the experimental dataset will be first 

described in detail. Then, we introduce the experimental setup, 

including the image processing and parameter settings in the 

training phase. Finally, the experimental results are presented 

in detail. A series of ablation studies are conducted to 

demonstrate the effectiveness of transfer learning, ordinal 

classification, feature fusion, and the proposed three-stream 

framework in ROP staging. 

 
Fig. 3. Multiple fundus images from different shooting angles in an 

examination of a left eye. As indicated by the black marked arrows, an 

obvious ridge can be observed in (b) and (c) t, while (a), (d), (e) and (f) 

appear normally. 

A. Data Imaging and Labeling 

In this study, 9794 fundus images of 650 premature infants 

from 2024 ROP examinations were acquired using RetCam3 

from the Guangzhou Women and Children Medical Center 

from 2012 to 2015. The collection and analysis of image data 

were approved by the Institutional Review Board of the 

Guangzhou Women and Children Medical Center and adhered 

to the tenets of the Declaration of Helsinki. An informed 

consent was obtained from the guardians of each subject to 

perform all the imaging procedures. The resolution of the 

images is 640 × 480 pixels. The number of images per-

examination varies from 1 to 32, and the most frequent number 

is 6. The 6 images from an examination of a left eye in ROP 

stage 2 are shown in Fig. 3, in which the ridge in the fundus can 

be observed in Fig. 3 (b) and (c). The gestation age varies from 

26 to 41 weeks, with a mean value of 32 weeks. 50% infants’ 

gestation age is under 32 weeks and 42% of the infants’ birth 

weight is less than 1500 grams. 

The ground truth annotation is according to the symptoms 

described in Table I. One chief ophthalmologist with more than 

fifteen years of ROP clinical experience and two attending 

ophthalmologists with over three years of ROP clinical 

experience from the Guangzhou Women and Children Medical 

Center participated in data labeling. Finally, 6110 fundus 

images with consistent labels among the three annotators are 
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included in our study, in which 4602 are normal fundus images 

and 1508 images from 508 examinations are abnormal ones 

ranging from stage 1 to 5. To balance the categories, 1639 

normal fundus images from 665 examinations are randomly 

selected. So the final dataset used in our study contains 3147 

fundus images from 1173 examinations. For per-image 

classification, all fundus images are divided into training set, 

validation set and testing set according to examinations, which 

are shown in the Table III. For per-examination classification, 

the numbers of examinations of each category are shown in the 

last row of Table III and a four-fold cross validation strategy is 

adopted to evaluate the ROP staging performance. 

 

 

 

TABLE III 

DATASET USED FOR TRAINING AND TESTING THE PROPOSED METHOD IN THIS STUDY 

Dataset Normal Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Total 

Training 1034 73 287 269 229 60 1952 

Validation 302 20 93 75 58 12 560 

Test 303 26 127 106 61 12 635 

Total images 1639 119 507 450 348 84 3147 

Total examinations 665 64 181 146 89 28 1173 

 
TABLE IV 

PER-IMAGE CLASSIFICATION RESULTS WITH DIFFERENT METHODS 

method W_R W_P W_F1 ACC1 Kappa 

ResNet18_1_Scratch [45] 0.5449 0.4775 0.4872 0.5906 0.2593 

ResNet18_1 [45] 0.8362 0.8063 0.8202 0.9449 0.9424 

DenseNet121_1 [46] 0.8488 0.8500 0.8453 0.9575 0.9530 

EfficientNetB2_1 [47] 0.8409 0.8360 0.8332 0.9165 0.9283 

ResNet18_1_OC 0.8614 0.8585 0.8572 0.9480 0.9610 

DenseNet12_1_OC 0.8614 0.8674 0.8591 0.9591 0.9621 

EfficientNetB2_1_OC 0.8441 0.8415 0.8395 0.9339 0.9409 

ResNet18_3_Concatenation 0.8567 0.8671 0.8524 0.9591 0.9567 

DenseNet121_3_Concatenation 0.8756 0.8857 0.8637 0.9717 0.9729 

EfficientNetB2_3_Concatenation 0.8614 0.8583 0.8586 0.9307 0.9404 

ResNet18_2_Concatenation 0.8535 0.8583 0.8442 0.9638 0.9468 

ResNet18_4_Concatenation 0.8331 0.8104 0.8175 0.9764 0.9505 

ResNet18_DenseNet121_Concatenation 0.8646 0.8679 0.8576 0.9543 0.9409 

ResNet18_EfficientNetB2_Concatenation 0.8583 0.8286 0.8414 0.9638 0.9414 

DenseNet121_EfficiebtNetB2_Concatenation 0.8598 0.8348 0.8441 0.9586 0.9470 

TSF_Concatenation 0.8866 0.8966 0.8867 0.9732 0.9763 

The proposed method 0.9055 0.9092 0.9043 0.9827 0.9786 

‘ResNet18_1_Scratch’ represent the ResNet18 trained from scratch. ‘ResNet18_1’, ‘DenseNet121_1’ and ‘EfficientNetB2_1’ represent the single 
ResNet18, DenseNet121 and EfficientNetB2 pre-trained on ImageNet, respectively. ‘ResNet18_1_OC’, ‘DenseNet121_1_OC’ and 
‘EfficientNetB2_1_OC’ represent the single ResNet18, DenseNet121 and EfficientNetB2 pre-trained on ImageNet with ordinal classification, 
respectively. ‘ResNet18_2_Concatenation’, ‘ResNet18_3_Concatenation’ and ‘ResNet18_4_Concatenation’ represent the two, three and four 
identical parallel ResNet18 pre-trained on ImageNet with concatenation feature fusion, respectively. ‘DenseNet121_3_Concatenation’ and 
‘EfficientNetB2_3_Concatenation’ represent the three identical parallel ResNet18 and EfficientNetB2 pre-trained on ImageNet with concatenation 
feature fusion, respectively. ‘ResNet18_DenseNet121_2_Concatenation’, ‘ResNet18_EfficientNetB2_2_Concatenation’ and 
‘DenseNet121_EfficientNetB2_2_Concatenation’ represent the pairwise combination of three different networks, respectively. ‘TSF_Concatenation’ 
and ‘The proposed method’ represent   the three-stream framework using concatenation feature fusion without and with considering the order of 
categories, respectively. 

TABLE V 
PER-EXAMINATION CLASSIFICATION RESULTS WITH DIFFERENT METHODS ON PER-EXAMINATION CLASSIFICATION (MEAN ± STANDARD DEVIATION) 

method W_R W_P W_F1 ACC1 Kappa 

ResNet18_1 [45] 0.7474±0.0272 0.6943±0.0170 0.7159±0.0202 0.8465±0.0105 0.8266±0.0283 

DEnseNet121_1 [46] 0.7724±0.0184 0.7070±0.0189 0.7341±0.0204 0.8678±0.0097 0.8624±0.0114 

EfficientNetB2_1 [47] 0.7543±0.0271 0.7604±0.0277 0.7533±0.0145 0.8611±0.0176 0.8813±0.0163 

ResNet18_1_OC 0.7496±0.0280 0.7601±0.0387 0.7473±0.0310 0.8251±0.0128 0.8635±0.0132 

DenseNet121_1_OC 0.7843±0.0151 0.7881±0.0101 0.7818±0.0153 0.8594±0.0207 0.8942±0.0164 

EfficientNetB2_1_OC 0.7647±0.0307 0.7730±0.0277 0.7644±0.0305 0.8619±0.0213 0.8883±0.0096 

TSF_Concatenation 0.7858±0.0202 0.7198±0.0203 0.7483±0.0204 0.8585±0.0225 0.8683±0.0248 

The proposed method 0.8006±0.0190 0.8039±0.0314 0.7958±0.0251 0.8706±0.0257 0.9107±0.0267 
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B. Experimental Setup 

1) Image Processing  
To reduce the computational cost, all fundus images are 

down sampled to 256 ×256 using bilinear interpolation and 

normalized to [0,1]. For per-image classification pattern, to 

prevent over-fitting and enhance the generalization ability of 

the model, online data augmentation has been performed, 

including random rotation, horizontal flipping and vertical 

flipping. Previous studies [53-57] show that green channel of 

the fundus image has the highest contrast between retinal 

vessels and background. Therefore, considering the training 

speed, only green channel is used in per-examination 

classification. Consistent with previous studies [19,20], the 

image number of each examination is set to 12 in our study. For 

those examinations with less than 12 images, the images are 

randomly resampled to obtain 12, while for those with more 

than 12 images, 12 images are randomly selected as one 

examination. 

As can be seen from Table III, the category distribution is 

unbalanced, where most ROP data are in stage 2 and 3, while 

stage 1, 4 and 5 are relatively few. There are two possible 

reasons: (1) Since both the boundary of stage 1 and the ridge of 

stage 2 are qualitative descriptions, there is subjectivity in the 

labeling process and ophthalmologists tend to label it as stage 

2. (2) The phenomenon of partial and complete detachment of 

retina in stage 4 and 5 is rarely found in clinical practice, 

because effective treatment will be carried out before the 

disease progresses to stage 4 and 5 in most of the cases. To 

avoid the training problems caused by the imbalance of 

categories, balance coefficient βk listed in Eq. (8) is introduced 

to modify the final loss function. 

 

 

 
2) Parameter Setting 
The proposed three-stream framework is based on the 

ResNet18, DenseNet121, EfficientB2 pre-trained on ImageNet. 

The implementation is based on the PyTorch platform. We use 

a NVIDIA Tesla K40 GPU with 12GB memory to train the 

model with back-propagation algorithm by minimizing the loss 

function as shown in Eq. (5). Adam is used as the optimizer to 

minimize the loss function. Both initial learning rate and weight 

decay are set to 0.0001 to optimize the network. For per-image 

classification pattern, the batch size and epoch are set to 32 and 

40, respectively. For per-examination classification pattern, the 

batch size and epoch are set to 8 and 60. During training, all 

networks are trained with identical optimization schemes and 

we save the best model on validation set. 

3) Evaluation Metrics 
Considering the category imbalance of the dataset shown in 

Table III, weighted recall (W_R), weighted precision (W_P), 

weighted F1 score (W_F1), accuracy within 1 (ACC1) [39] and 

Kappa index [20, 58-59] are introduced to evaluate the ROP 

staging performance. ACC1 is similar to accuracy, which 

allows a wider range of outputs as “right”. For example, if the 

ground truth is stage 4, then the predictions of both stage 4 and 

TABLE VI 

PERFORMANCE COMPARISON ON PER-IMAGE TASK 

Methods W_R W_P W_F1 ACC1 Kappa 

Inception-V4 [61] 0.8331 0.8443 0.8336 0.9480 0.9480 

Inception-V4_OC 0.8457 0.8610 0.8449 0.9496 0.9528 

ResNext50 [62] 0.8645 0.8749 0.8651 0.9543 0.9536 

ResNext50_OC 0.8787 0.8802 0.8769 0.9601 0.9646 

SE_ResNext50 [63] 0.8488 0.8547 0.8847 0.9559 0.9481 

SE_ResNext50_OC 0.8835 0.8905 0.8847 0.9701 0.9630 

SE_ResNet50 [63] 0.8567 0.8672 0.8551 0.9685 0.9523 

SE_ResNet50_OC 0.8787 0.8843 0.8792 0.9528 0.9579 

TST_Concatenation 0.8866 0.8966 0.8867 0.9732 0.9763 

The proposed method 0.9055 0.9092 0.9043 0.9827 0.9786 

 TABLE VII 

COMPARISON OF THE PROPOSED METHOD WITH HU ET AL.’ METHOD WITH PER-EXAMINATION CLASSIFIER 

Metrics Hu et al. [19] Proposed 

W_R 0.7741±0.0244 0.8006±0.0190 

W_P 0.7152±0.0340 0.8039±0.0314 

W_F1 0.7305±0.0386 0.7958±0.0251 

ACC1 0.8440±0.0174 0.8706±0.0457 

Kappa 0.8523±0.0315 0.9107±0.0367 

 TABLE VIII 

COMPARISON OF THE PROPOSED METHOD WITH OTHER METHODS WITH PER-IMAGE CLASSIFIER 

Metrics Zhang et al. [21] Peng et al. [22] Lei et al. [23]  Proposed  

W_R 0.8724 0.8414 0.8519  0.9055  
W_P 0.8797 0.8438 0.8095  0.9092  
W_F1 0.8670 0.8387 0.9043  0.9043  
ACC1 0.9685 0.9669 0.9827  0.9827  
Kappa 0.9503 0.9532 0.9786  0.9786  
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5 will be considered as right in ACC1, which is consistent with the common clinic principle of ROP staging. 

 
Fig. 4. The confusion matrices of different methods. 

 

Fig. 5. Original fundus images and their corresponding heat maps of class activation. (a) Stage 1. (b) Stage 2. (c) Stage 3. (d) Stage 4. (e) Stage 

5.
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C. Results of the Proposed Method 

1) Results of Per-image ROP staging 
For per-image classification pattern, we validate the 

proposed method on the 635 fundus images of ROP from 196 

examinations. Table IV shows the quantitative results of 

different methods for per-image classification pattern. As can 

be observed from Table IV, for per-image classification pattern, 

our method improves the W_R by 6.93%, 5.67% and 6.46% 

compared with ResNet18_1, DenseNet121_1 and 

EfficientNetB2_1 respectively, and achieves 0.9055 for W_R, 

0.9092 for W_P, 0.9043 for W_F1, 0.9827 for ACC1 and 

0.9786 for kappa. To analyze the classification performance of 

our method for each stage of ROP, the confusion matrices 

shown in Fig. 4 are used to compare the classification results of 

our proposed method with baseline networks. As can be seen 

from Fig. 4, the proposed model can identify each stage of ROP 

with high accuracy except for stage 1, which outperforms the 

ResNet18_1 and ResNet18_1_OC in each index. We introduce 

the "class activation mapping" technology proposed by Zhou et 

al [60] to obtain the heat maps of fundus images with different 

ROP stages, which are shown in Fig. 5. As shown in Fig. 5, the 

heat maps can focus on the location of key lesions related to 

different ROP stages, which demonstrates the effectiveness of 

the proposed method in the ROP staging. 

2) Results of Per-examination ROP Staging 
For per-examination classification pattern, we evaluate the 

performance of the proposed method with a 4-fold cross 

validation strategy. Table V shows the quantitative results of 

different methods for per-examination classification pattern. As 

can be seen from Table V, for per-examination classification 

pattern, our method improves the W_R by 5.32%, 2.82% and 

4.63% compared with ResNet18_1, DenseNet121_1 and 

EfficientNetB2_1 respectively, and achieves 0.8006 for W_R, 

0.8039 for W_P, 0.7958 for W_F1, 0.8706 for ACC1 and 

0.9107 for Kappa. In addition, as can be seen from Table IV, 

the performance of per-image staging classifier is higher than 

per-examination. The possible reason is that the amount of 

training data for per-image ROP staging is relatively larger than 

that for per-examination ROP staging, which is beneficial to the 

model training, especially for the relatively complex deep 

network. 

3) Comparison with Other Methods 
The proposed network is compared with other state-of-art 

methods. First, taking the per-image classification for example, 

we compare our method with other excellent classification 

networks, including Inception-V4 [61], ResNext50 [62], 

SE_ResNet50 [63], SE_ResNext50 [63]. The quantitative test 

results are present in Table VI. As can be seen from Table VI, 

the proposed method outperforms other classification networks 

in our ROP staging task in terms of all metrics. Compared to 

the second best network (SE_ResNext50_OC), the W_R, W_P, 

W_F1, ACC1 and Kappa of the proposed method increase by 

2.20%, 1.87%, 1.96%, 1.26% and 1.56%, respectively. As also 

can be seen from Table VI, the strategy of ordinal classification 

can improve the performance of ROP staging for all baseline 

networks, which shows its good universality.  

Second, we compare our method with four recent studies on 

ROP analysis [19], [21], [22] and [23]. The network proposed 

by Hu et al. [19] is a per-examination classifier based on an 

ImageNet pretrained Inception-V4. As can be seen from Table 

VII, the W_R, W_P, W_F1, ACC1 and Kappa of the proposed 

method are 2.55%, 8.87%, 6.53%, 3.66% and 5.84% higher 

than that of Hu et al.’s method. The methods proposed by Zhang 

et al. [21], our previous work [22] and Lei et al. [23] are per-

image classifiers, which are ImageNet pretrained VGG-16, 

ImageNet pretrained Resnet18 with attention mechanism and 

ImageNet pretrained ResNet50, respectively. As can be 

observed from Table VIII, for the per-image classification task, 

the proposed method outperforms the other three methods on 

all metrics, which improves the W_R by 3.31%, 6.41% and 5.36% 

compared with the other three methods respectively. 

In conclusion, our method is superior to previous studies both 

in ROP staging per-examination and per-image. There are two 

possible reasons. First, the previous researches mainly focused 

on the binary classification problem, which is relatively simple. 

Therefore, the general deep learning classification network only 

using a single network feature extraction can achieve better 

classification performance. However, in the current study, 5-

level ROP staging combined with normal fundus images 

involves a total of 6 categories of classification recognition, in 

which the distinction between categories is not obvious 

compared to binary classification, which leads to more 

difficulties. Therefore, general deep learning methods may not 

work well, which only use a single network feature extraction. 

Feature fusion technology makes it possible to combine 

features extracted from different feature extractors for final 

classification, which can improve the classification accuracy. 

This further shows that the multi-networks feature fusion 

method proposed in this paper can better extract more 

comprehensive and rich features. Second, ROP stage from 1 to 

5 is a gradual process from mild to severe, so the introduction 

of ordinal classification strategy is reasonable, which can 

effectively improve the classification accuracy. 

D. Ablation study 

1) Ablation Study for Adopting Transfer Learning 
We propose a three-stream framework with three different 

parallel deep networks, which are pre-trained on ImageNet. 

Previous studies [48-52] suggest that, compared with training 

from scratch, transfer learning can greatly help to optimize the 

model, speed up the training convergence and solve the 

problem of data imbalance and overfitting. We have also 

conducted experiments to compare the results based on pre-

training with those from scratch. As can be seen from Fig. 6, 

the performance based on transfer learning outperforms that 

from scratch significantly. As can be seen from Table IV, the 

ResNet18_1 (ResNet18 pre-trained on ImageNet) achieves a 

better performance by adopting the transfer learning, with W_R, 

W_P, W_F1, ACC1 and Kappa increasing from 0.5449, 0.4775, 

0.4872, 0.5906 and 0.2593 (ResNet18 trained from scratch) to 

0.8362, 0.8362, 0.8063, 0.8202, 0.9449 and 0.9424, 
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respectively. The results indicate that transfer learning is 

effective in our task. 

 
Fig. 6. Comparison between the network with pre-trained weights and 

the one trained from scratch. 

2) Ablation Study for Ordinal Classification 
To prove the effect of the ordinal classification, we conduct 

the ablation experiments as shown in Table IV (Row 2 to 7) and 

Table V (Row 1 to 6) for per-image and per-examination 

classification, respectively. For per-image classification, taking 

ResNet18_1 for example, by applying the ordinal classification 

(ResNet18_1_OC), the W_R, W_P, W_F1, ACC1 and Kappa 

increase from 0.8362, 0.8063, 0.8202, 0.9449 and 0.9424 to 

0.8614, 0.8585, 0.8572, 0.9480 and 0.9610, respectively, which 

show that considering the order of categories can indeed 

improve the ROP staging performance effectively. The 

confusion matrices shown in Fig.4 (a) and (b) also indicate that 

the classifier with ordinal classification can improve the 

classification accuracy of most stages, especially stage 1. But 

the classification accuracy of stage 2 has decreased after the 

introduction of ordinal classification, in which four and three 

stage 2 images were misclassified into the adjacent stage 1 and 

stage 3, respectively. The possible reason is that atypical ROP 

fundus images with blurry boundaries are easily misclassified 

into adjacent stages. For per-examination classification, taking 

DenseNet121_1 for example, the ordinal classification can 

improve all quantitative indexes except ACC1 and the W_R, 

W_P, W_F1 and Kappa are improved by 0.81%, 6.76%, 3.83% 

and 3.77%, respectively, which also demonstrates ordinal 

classification can improve the overall performance of ROP 

staging. 

3) Ablation Study for Different Features Fusion 
Strategies 

In this section, we explore the influence of different fusion 

strategies to the ROP staging. To be consistent with our 

proposed three-stream parallel network structure, we use three-

stream parallel network in all experiments. Here, for per-image 

classification, we take DenseNet121 as an example to compare 

four different feature fusion strategies. Table IX shows the 

classification results of different feature fusion strategies. As 

can be seen from Table IX, the feature fusion based on 

concatenation performs better than the other three strategies in 

most of the quantitative metrics. In terms of Kappa, the feature 

fusion based on concatenation improves by 4.35%, 0.56% and 

1.60% respectively compared with other three feature fusion 

methods, which may because that the increase of the number 

of channels by concatenation makes the description of image 

features richer and more comprehensive and improves the 

classification performance. As can be seen from Table IX, 

the ACC1 index of feature fusion based on mean operation 

is the highest. The possible reason is that the feature obtained 

by mean feature fusion is the average of three features, 

which is inclined to classify the image as its adjacent next 

severe stage of ROP. 

 

 
4) Ablation Study for Different Network Combinations 
To explore the performance of different network 

combinations in the three-stream feature extraction framework, 

we conduct the ablation experiments for per-image 

classification as shown in Table IV (Row 2, 3, 4, 8, 9,10 and 

16). As can be observed from Table IV, on one hand, the 

performance of multiple networks is better than that of a single 

network (Row 2 to 4 and row 8 to 10 in Table IV). On the other 

hand, our proposed framework with three different deep 

networks is better than other three frameworks with the same 

network in all quantitative metrics (Row 8 to 10 and row 16 in 

Table IV). In terms of W_R, our proposed network improves 

by 2.99%, 1.1% and 2.83% respectively compared with other 

three network combinations and achieves 0.8866 for W_R, 

TABLE IX 

ABLATION STUDY OF DIFFERENT FEATURE FUSION METHODS ON ROP DATA IN THIS PAPER. 

Methods W_R W_P W_F1 ACC1 Kappa 

DenseNet121_3_add 0.8472 0.8603 0.8373 0.9591 0.9294 

DenseNet121_3_mean 0.8724 0.8752 0.8633 0.9811 0.9673 

DenseNet121_3_max 0.8583 0.8623 0.8474 0.9559 0.9569 

DenseNet121_3_concatenation 0.8756 0.8857 0.8637 0.9717 0.9729 

‘DenseNet121_3_add’, ‘DenseNet121_3_mean’, ‘DenseNet121_3_max’ and ‘DenseNet121_3_concatenation’ represent three parallel DenseNet121 
pre-trained on ImageNet with addition feature fusion, mean feature fusion, maximum feature fusion and concatenation feature fusion, respectively. 

TABLE X 

ABLATION STUDY OF EACH COMPLEXITY ON ROP DATA IN THIS PAPER 

Methods W_R W_P W_F1 ACC1 Kappa parameters 

ResNet50 0.8519 0.8095 0.8263 0.9181 0.9317 25.57M 

ResNet101 0.8346 0.7915 0.8114 0.9307 0.9398 44.56M 

EfficientNetB5 0.8551 0.8551 0.8551 0.9827 0.9456 28.35M 

Proposed 0.9055 0.9092 0.9043 0.9827 0.9786 26.83M 
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0.8966 for W_P, 0.8867 for W_F1, 0.9732 for ACC1 and 

0.9729 for Kappa. There are two main findings from Table IV. 

First, DenseNet121 as feature extractor can get better 

classification performance, improving 1.89% and 1.42% in 

term of W_R compared with ResNet18 and EfficientNetB2. 

The possible reason is that dense connections of DenseNet121 

make full use of the information of each layer. Second, the 

classification performance of the proposed network is further 

improved using these three different networks as feature 

extractors, which shows that ResNet18 and EfficientB2 also 

play a positive role in our ROP staging task. The results 

demonstrate that increasing the number of feature extractors 

can improve the classification performance and the different 

types of feature extraction networks can increase the diversity 

of the features, which is crucial for ROP staging. 

5) Ablation Study for Network with Different Complexity 
Studies have shown that the performance of a network is to 

some extent related to the complexity of the network, and the 

increase in the number of parameters usually leads to better 

performance [34-38]. To prove that the performance 

improvement of our proposed network is irrelevant to the 

increase of network complexity, for per-image classification, 

we compare our network with other mainstream classification 

networks with similar or greater complexity, which is shown in 

Table X. As can be seen from Table X, the network complexity 

of this method is similar to that of ResNet50 and 

EfficientNetB5, but the performance is improved 5.36% and 

5.04% respectively in terms of W_R. In addition, compared 

with ResNet101, the number of network parameters of the 

proposed network is much less, but the performance is better 

than ResNet101. The comparison results show that the 

improvement of ROP classification performance is not due to 

the increase of network complexity. 

6) Ablation Study for the Number of Sub-networks 
We also conduct a series of experiments to discuss the impact 

of the number of sub-networks on ROP staging task from two 

aspects. On one hand, we explore the effect of the number of 

the same sub-networks as feature extractors on classification 

performance. Taking the first baseline network ResNet18 as an 

example, the experimental results of 1, 2, 3 and 4 subnetworks 

are shown in Table IV (Row 2, 8, 11 and 12). On the other hand, 

we have also conducted the experiments of combining three 

different subnetworks in pairs. The experimental results are 

shown in Table IV (Row 13 to 15). There are three main 

findings from Table IV (Row 2 to 4, row 8 and row 11 to 16). 

First, as the number of sub-networks increases (Row 2, 8, 11 

and 12 in Table IV), the classification performance increases 

first and then decreases, which shows that increasing the 

number of sub-networks can improve the accuracy of ROP 

staging in our task, but it is not that the more subnetworks, the 

better. The possible reason is that too complex networks are 

prone to over fitting, which leads to performance degradation. 

Second, for different networks as feature extractors, the 

increase in the number of networks will also bring performance 

gains from the second to fourth and eighth to sixteenth rows in 

Table IV. Third, as can be seen from the eighth to eleventh and 

thirteenth to sixteenth rows in table IV, when the number of 

networks is the same, the performance of different sub-

networks as feature extractors is better than that of the same 

sub-networks. The results demonstrate that the feasibility of the 

proposed network. 

IV. CONCLUSION 

In this paper, a simple and effective framework based on 

three different deep convolutional networks fusion is proposed 

for 5-level ROP staging per-image and per-examination. 

Compared with single network, our three-stream framework 

can extract rich and diverse high-level features from input 

image and fuse them into a richer and more effective feature for 

ROP staging, in which Resnet18 can solve the performance 

degradation problem of deep convolution neural network via 

residual connections, Densenet121's dense connection 

mechanism can solve the gradient disappearance problem in 

deep network and enhance the feature propagation and feature 

reuse, and EfficientNetB2 can balance the resolution, depth and 

width of the network to achieve good efficiency and accuracy. 

Compared with other state-of-art classification networks, the 

proposed method adopts feature fusion and ordinal 

classification, which can adaptively focus on lesion-related area 

of ROP and effectively improve the accuracy of ROP staging 

and the generalization ability of model.  

The ablation experiments show that ordinal classification can 

improve the ROP staging performance significantly and the 

concatenation feature-level fusion strategy can further improve 

the classification accuracy. As can be seen from the confusion 

matrices in Fig. 4, for the misclassified samples, our method 

tends to misclassify them into the adjacent next severe stage of 

ROP for per-image classification and similar phenomena 

appear in ROP staging per-examination, which is consistent 

with the clinical staging rules for ambiguous samples. So as can 

be seen from Table IV, the ACC1 index of our proposed 

network achieves 0.9827 for per-image classification, which is 

relatively higher compared with other quantitative metrics. The 

possible reason is that the proposed network tends to classify 

ROP image into the adjacent next severe stage in the 

misclassification cases, which does not affect the ACC1 index 

because ACC1 allows a wider range of outputs as “right”. 

As can be seen from Fig. 4, although compared with other 

classification methods, our proposed method has higher 

recognition accuracy for stage 1, its total performance for stage 

1 is relatively low compared with the performances for other 

stages. In terms of test data in our study, only 14 of the 26 ROP 

fundus images with stage 1 were correctly identified, and the 

remaining 12 were all mistakenly divided into stage 2. There 

are two main possible reasons: (1) There are relatively few ROP 

data of stage 1 in the training process. Although we can reduce 

the impact of imbalance categories by changing the weight of 

loss function and applying transfer learning, we still can't solve 

the problem caused by data imbalance essentially. (2)  Both the 

clinical criteria for stage 1 and stage 2 of ROP are the 

demarcation lines, which separate the vascularized and 

vascularized areas. The demarcation line in stage 2 is wider than 
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that in stage 1. However, for some ROP fundus images, the 

width of the demarcation line is not easy to be distinguished for 

both manual labeling and automatic ROP staging. Therefore, it 

may be difficult for the depth network to learn the subtle 

differences between them, leading to prediction errors. 

Although there are relatively few ROP data of stage 5 in the 

training process, the recognition accuracy of ROP in stage 5 is 

quite high. As far as our test data are concerned, all 12 ROP 

fundus images in stage 5 can be predicted correctly by the 

proposed method. The possible reason is that the retina in stage 

5 is completely detached, which is relatively obvious in fundus 

image. Therefore, our depth network can accurately learn its 

effective features.  

In the near future, we will collect more data to build a larger 

and more comprehensive ROP database with relatively 

balanced categories and will extend the proposed method to 

analyze AP-ROP, plus disease and three zones of ROP, aiming 

to comprehensively assist the ophthalmologist in clinical 

diagnosis and treatment of ROP. 
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